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Abstract
We have considered an InGaAs/InAlAs/InP/InGaAs ballistic tunnel transit-
time oscillator under dc and small high frequency ac electric field. Using the
quantum transmitting boundary method coupled with the Poisson equation, we
have studied electron tunnelling through the barrier assuming that the electrons
have a nonparabolic dispersion, and have got the steady state field–current
characteristics (E– j ) of the oscillator. As a result of the small signal analysis
based on these characteristics, we find the negative resistance windows, which
are the work regions of the oscillator. The windows get much deeper with the
increase of the dc electric field. Their frequencies are in the terahertz (THz)
range, which may be used to develop efficient and powerful sources of this
range.

1. Introduction

In 1958, the tunnel injection transit-time (TUNNETT) diode was proposed by Nishizawa and
Watanabe [1]. The concept of this diode was introduced in the analysis of the high-frequency
properties of the avalanching negative resistance diode which is today called the IMPATT diode.
Now TUNNETT diodes are considered to have better noise and frequency performance than
IMPATT diodes due to the fundamental properties of tunnelling [2]. Their better performance
allows them to serve as millimetre and submillimetre wave sources up to the terahertz (THz)
range [3]. Sources and detectors in this range have aroused considerable interest in the past
few years [3–10]. With the advances in MBE techniques, many TUNNETT diodes have been
realized [11–13]. Recently, Gribnikov et al [14] proposed a new type of ballistic TUNNETT
oscillator for the terahertz range and analysed the linear response of the oscillator under small
high frequency ac electric field. They also left some additional problems that need to be
addressed, which include the field–current (E– j ) characteristics of the oscillator. The field
here is the electric field across the tunnel barrier.

In this paper we report on numerical studies of the E– j characteristics of one version of the
TUNNETT oscillator. The structure of the TUNNETT oscillator is illustrated in figure 1 of [14].
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Due to the total length of the oscillator, we use the quantum transmitting boundary method
(QTBM) to simulate electron tunnelling in the oscillator. QTBM was originally developed
by Lent and Kirkner [15] for treating electron waveguides, and was adapted by Frensley [16]
to treat heterostructure tunnel devices. It is robust and numerically stable compared to an
alternative method used in electron tunnelling, which is called the transfer matrix method
(TMM) [17]. The calculated results indicated that the selection of the tunnel barrier and the
length of the transit space can increase the work regions of the TUNNETT oscillator into the
terahertz range.

The organization of this paper is as follows. In section 2 we discuss in detail the application
of QTBM in solving the Schrödinger equation with semi-infinite boundary conditions. In
section 3 we show how to get the tunnelling current self-consistently in TUNNETT diodes
when the electrons have nonparabolic dispersion. In section 4 we apply the tunnelling model
to the TUNNETT oscillator. Finally, in section 5 we give the conclusion of this paper.

2. Tunnelling model

As a widely used electron injection mechanism in many electronic devices, electron tunnelling
across arbitrary potential barriers has been studied using different models. One of the most
important physical parameters in treating tunnelling is the quantum transmission coefficient
(QTC), which is in general related to the energy of electrons. To obtain QTC, the WKB or
Gundlach method [18] can be used when the barrier shape is triangular or trapezoidal. But
energy barriers which are not of triangular or trapezoidal shape are not treated correctly by
these models. To accurately describe tunnelling in such cases, the Schrödinger equation must
be solved. This can be achieved by using the TMM or QTBM.

In our TUNNETT oscillator, electrons in the cathode pool can tunnel across the barrier
and inject into the transit space. They are finally absorbed by the anode contact without
any reflection or back-scattering. This process can be simulated as electrons in the cathode
tunnelling across the barrier and transit space into the anode, which can be described by the
simplest Hermitian effective-mass Schrödinger equation:

− h̄2

2

∂

∂x

(
1

m(x)

∂

∂x
ψ(x)

)
+ V (x)ψ(x) = Eψ(x), (1)

where V (x) includes both band-edge discontinuities and macroscopic electric fields, m(x) is
the space dependent effective mass, ψ(x) is the wavefunction, and E represents energy. We
use the finite difference method to discretize equation (1) and obtain

Hσ,σ−1 Fσ−1 + H̄σ,σ Fσ + Hσ,σ+1 Fσ+1 = 0, (2)

where H̄ ≡ (H − E), and

Hσ,σ−1 Fσ±1 = − h̄2

d2

(
1

mσ + mσ±1

)
, (3)

Hσ,σ = Vσ − Hσ,σ−1 − Hσ,σ+1, (4)

with d being the discretization length, and σ being the discretization index (1 < σ < N).
We can employ the QTBM to describe the boundary conditions for the semi-infinite

boundary regions on the cathode and anode contacts, where the potential V (x) is constant. For
a given energy E , the general solution to the Schrödinger equation ψ(x) in these regions can
be written as

ψ(x) =
{

aceikc x + bce−ikc x , at cathode
aae−ika x + baeika x , at anode

(5)



Steady-state and small signal analysis of terahertz ballistic tunnel transit-time oscillator 629

where ac and aa are the amplitudes of the incoming wave components, bc and ba are the
amplitudes of the outgoing wave components, and kc and ka are the wavenumbers of the
cathode and anode region, respectively. We assume that the simulated region is discretized
into N meshpoints, and that meshpoints 1 and 2 (N − 1 and N) are in the cathode (anode)
semi-infinite flat-band region. From equation (5) we get

ψ(1)− eikcdψ(2) = ac(1 − e2ikcd), (6)

ψ(N) − eikadψ(N − 1) = aa(1 − e2ika d). (7)

The two boundary conditions, together with the differential Schrödinger equation, constitute
a tridiagonal system of N linear equations with N unknowns ψ(1), ψ(2), . . . , ψ(N), which
can be solved with readily available numerical routines. The QTC is given by

Tc = ka

kc

mc

ma
|ψ(N − 1)|2, (8)

where mc and ma are the effective masses of electrons in the cathode and anode regions.

3. E–j calculation with nonparabolic dispersion

To obtain the current density from the QTC, the commonly used expression in the literature is
based on the work of Tsu and Esaki [19]. It is applicable for electrons with parabolic dispersion
in the transverse directions. But here the electrons have a nonparabolic dispersion as [14]

ε(p) = VS

(√
p2

S + p2 − pS

)
, (9)

where VS is the saturated electron velocity and pS = mVS. To calculate the E– j characteristics,
we need the expressions of the current density and carrier concentration corresponding to this
specific nonparabolic dispersion.

In general, to obtain the density of the observable we should first calculate the expectation
value of the observable quantity for each state, taking the scattering states to be normalized to
unit amplitude. The integral of the expectation value multiplied by the electron distribution
for all states gives us the density of the observable. The expectation value of the density for a
state ϕ is simply

nϕ(x) = ϕ�(x)ϕ(x). (10)

The expectation value of J is

〈ϕ|J |ϕ〉 = qυTc, (11)

where υ is the group velocity. Due to the inherent difficulties involved with normalizing
a wavefunction that does not correspond to a quasi-bound state [20, 21], we have chosen a
normalization such that the resulting total electron density in the structure exactly compensates
the net positive charge. Once the solution has converged, the quantum-mechanical electron
density at the border of the electrode always ends up to be equal to the semiclassical value
there, provided that the borders are chosen sufficiently far away from the barrier.

The expression for the total current density J can be written as

J = q
∫ ∞

0

dE‖
2π h̄

Tc(E‖)(F(E‖ − Ef,c)− F(E‖ − Ef,a)), (12)

where

F(E) = mkBT

π h̄2β
ln(1 + e− E

kB T ) +
1

π h̄2V 2
S

∫
E⊥

1 + e
E+E⊥
kB T

dE⊥, (13)
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Ef,c and Ef,a denote the Fermi levels of the cathode and anode region, respectively, m denotes
the electron effective mass, T is the absolute temperature, kB the Boltzmann constant, and E⊥
and E‖ are the electron energy perpendicular and parallel to the current direction, respectively.

Similarly, we can get the carrier concentration

n =
∫ ∞

0

(F ′(E‖ − Ef,c) + F ′(E‖ − Ef,a))

2π h̄VS
dE‖, (14)

where

F ′(E) = 1

π h̄2V 2
S

∫
(E⊥ + mV 2

S )(E⊥ + mV 2
S + E)√

(E⊥ + E)2 + 2mV 2
S (E⊥ + E)

1

1 + e
E+E⊥
kB T

dE⊥. (15)

The model we use here does not allow the inclusion of scattering of carriers. However, in
most real devices, scattering plays an important role in producing the self-consistent energy
bands and resulting device operation. The semi-classical model inherently includes scattering.
A simple compromise is to use the semi-classical model in the electrode regions and the
quantum model in other regions, though the semi-classical model ignores all the quantum
effects in the calculation of carrier profile:

n = 2
∫

d3k

(2π)3
f (E(k)), (16)

where f is the Fermi–Dirac distribution function.
To get a self-consistent solution, the Poisson equation needs to be coupled with the

above linear system. We can use the Gummel method to get a self-consistent solution of
the wavefunction and then other values of interest.

4. Application to TUNNETT oscillator

Our TUNNETT oscillator is configured as follows. The transit space is undoped InP, the
cathode and the anode contact In0.53Ga0.47As alloy, and the tunnel barrier is the In0.52Al0.48As
alloy. The cathode and anode concentrations are 3.5×1018 cm−3. The conduction band offset
between the cathode and the barrier, and the barrier and the transit space are 0.52 and 0.30 eV,
respectively. The electron effective mass is 0.04 m0 at the cathode, 0.077 m0 at the barrier,
and 0.08 m0 at the transit space. The Fermi levels are determined according to [23]. Other
parameters are taken from [14]: VS = 1.3 ×108 cm s−1, l = 70 nm. The temperature we used
in the calculation is room temperature T = 300 K.

We show the potential distribution (right-hand axis) and the carrier density profile (left-
hand axis) obtained from the proposed self-consistent model in figure 1. The bias voltage is
0.75 V. As we can see, the potential does not drop linearly from the anode to the cathode.
There forms an accumulation layer at the anode region, and correspondingly, a depletion layer
at the cathode. These are due to the bound states of the barrier, as we can see from other
similar structures [22, 24]. As stated in section 3, we use the semi-classical expressions of
the carrier concentration, so we do not have the Friedel oscillations in the electrode regions
that will appear if we use the quantum-mechanical expressions. The carrier concentration in
the barrier and the transit space is much smaller than that in the electrode regions due to the
relatively long transit space. The inset shows a relatively clear picture of the carrier profile in
the barrier region, which is too small in magnitude to be seen in the main figure.

The QTC Tc(E) across the TUNNETT oscillator is calculated using above parameters,
and shown in figure 2. The oscillatory behaviour of Tc(E) is due to resonance through the
bound states above the barrier. It can be seen that there are various resonances in the structure.
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Figure 1. Carrier density and potential profile of the TUNNETT oscillator when the biased voltage
is 0.75 V. The transit space length is l = 70 nm and undoped, the barrier width is b = 5 nm, the
barrier height is 0.52 eV, the electrode concentration is n = 3.5 × 1018 cm−3 and the temperature
is 300 K. The inset shows the carrier profile in the barrier region, which is too small in magnitude
to be seen in the main figure. The tick labels of the inset are the same as in the main figure and are
omitted.
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Figure 2. The TC of electrons as a function of energy when the oscillator is biased at 0.75 V. The
other parameters are the same as in figure 1.

These resonances are of importance for the accuracy of the total current and must be resolved
appropriately. The number and steepness of the peaks depend on the number and width of
the barriers, as well as on the applied voltage. The oscillator has only one barrier, so we do
not have strong resonant states as we see in the resonant tunnelling diode. According to the
QTC of electrons, we can get the tunnel current using equation (12). The E– j characteristics
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Figure 3. E– j characteristics of the ballistic TUNNETT oscillator. The other parameters are the
same as in figure 1.

are shown in figure 3. The current increases almost linearly at low electric field and more
sharply at higher electric field. This is due to the increase of transmission coefficient when the
electric field gets larger. No negative differential resistance regions appear, since we have only
one long barrier in the oscillator. Compared to the interband tunnelling injection of electrons,
tunnelling through a heterobarrier is more efficient. We can get the same current density with
about ten times smaller electric field [14].

Now we can obtain the values of A0 = eE( j)(κD/2ejmVS)
1/2 and �0 =

d j/dE(mVS/2ejκD)
1/2 from the current j . These two parameters represent the finite resistance

of the tunnel emitter controlled by an electric field applied to it. For the space-charge limited
case when the tunnel emitter barrier does not limit electron injection from the electrode,
A0 = 0 and �0 = ∞ [14]. But [14] did not investigate their interrelations and considered
them as self-consistent independent parameters. After that we computed the conductance of
the TUNNETT oscillator biased by a dc and high frequency ac electric field using the small-
signal approximation proposed in [14], which is shown in figure 4. Due to the influence of
the nonparabolicity of the electron dispersion on the negative windows [14], we use the more
realistic nonparabolic dispersion equation (9) in our simulation. From figure 4 we can see that
two obvious dynamic negative resistance windows in the terahertz range are clearly shown
under each current density despite the influence of the electron dispersion nonparabolicity. The
first negative window seems to have more attractive potential of application [25, 26]. Since
the electron tunnelling time is much shorter than the transit time, according to the operation
principle of a transit-time diode, we can change the length of the transit space or use different
material to control the negative window frequencies. We can also see that the windows get
much deeper with increasing current density. This is what we prefer in the potential use of a
terahertz oscillator.

5. Conclusion

We have simulated in this paper one specific version of the ballistic TUNNETT oscillator
proposed in [14], which is considered as a possible oscillator for the terahertz range. One of
the additional problems left in [14], the E– j characteristics of the oscillator, has been studied
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Figure 4. Conductance G of the TUNNETT oscillator plotted against frequency f at the current
density j = 0.48 × 104 A cm−2 (1), j = 0.85 × 104 A cm−2 (2). The other parameters are the
same as those in figure 1.

numerically. The calculated results indicate that heterobarrier tunnelling has more attractive
advantage in electron injection than interband tunnelling. We have also obtained the negative
conductance windows of the TUNNETT oscillator. We need to do some transit time simulation
of this oscillator in the future.
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